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Abstract

Renewable Energy Resources have been identified among the most promising sources of harnessing
power for industrial and household consumption but their power generations highly fluctuate so
building renewable power systems without critical reliability analysis might result in frequent
blackouts in the power system. Therefore, in this paper, a robust, effective and efficient design
approach is proposed to handle the reliability issues. The study involves a Mathematical modelling
strategy of the PV system to estimate the total PV power produced and the Bottom-Up approach
for predicting the household load demand. The reliability is defined in terms of Loss of Load
Probability. The design methodology was validated with a University Household. The data used
for the analysis consists of daily average global solar irradiance and load profiles. The results
revealed that throughout the year, November-February is where the system seems to be more
reliable. Also, the results indicated that without buck-up systems, the system would experience
an average annual power loss of 17.8753% and thus, it is recommended that either solar batteries
or the grid are used as backup system to achieve a complete level of reliability.
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1 Introduction

The demand for energy around the globe keeps growing exponentially and due to the expensive and
scarcity nature of the non-renewable sources of energy like fossil fuels, keeping up this demand over
time is extremely difficult [1]. Due to this, much attention is being shifted to more environmentally
friendly, replenishing and cost-effective energy sources [2]. Renewable Energy Sources (RES) of
energy such as the wind, solar, hydro, ocean tidal, etc., seem to be the most preferred options.

However, since their generations of power is purely stochastic in nature (completely depend on
climatic conditions which are extremely complex to be predicted accurately), and instances such
as the technical connection failures, the set-up Renewable Energy Supply System (RESS) might
experience frequent load failures or blackouts [3]. In other words, they are unable to guarantee a
reliable and continuous supply of energy at a cost that can compete with the conventional power
from the grid since the reliability level is highly influenced by the system’s technical operation and
the intermittency in the RES.

Therefore detailed analysis on the sustainability and cost-effectiveness of the RESS might not be
realistic without a critical assessment of the system’s reliability [4]. Extensive reliability analysis
and assessment could aid in setting up a more robust and optimal planning strategy for solar energy
designers [5].

This has motivated many authors to conduct various researches on the reliability analysis of the
RESS. For instance, Fara et al. [6] conducted a reliability analysis of PV systems for specific
applications where the focus was to get a much more stable and sustainable operation of a PV
system, in [7], a reliability analysis was carried out and it was concluded that to achieve a higher
level of reliability, a small wind turbine with small power electronics must be used, again, Essan [§]
built a methodology to assess the reliability for islanded hybrid PV-diesel-battery system in society
at Nigeria, Sayed [9] also conducted a study which assessed and analyzed PV grid-linked reliability,
its availability and the maintainability. Though the reliability problem has been addressed in various
forms by different researchers it remains a complicated problem, that is, given energy demand, it is
really difficult to estimate the reliability level of the RESS so that it could meet such demand due
to the uncertainty and some technical failures in the RESS [10]. The set-up in Ghana, for instance,
is mostly based on experience and intuition, which could sometimes result in either overproduction
or underproduction of power [11]. Furthermore, most of the feasibility studies on PV systems did
not consider critical analysis and assessment of the system’s reliability [9]. The few studies that
considered the reliability analysis were purely based on the manufacturers’ data which according to
[7], could yield results that have no proper or concrete justification. Also, though there have been
a lot of studies on the design of solar systems in Ghana, none of these considered a critical analysis
and assessment of the system reliability [4]

Therefore, in this paper, a robust, effective and efficient design approach is proposed to handle the
reliability issues of RESS in Ghana. The study involves a Mathematical modelling strategy of the
various components for measuring reliability.

To achieve the defined objective, we outline the paper in the following manner: section one

summarizes the background of the study, the problem statement and the research objectives. In
section two, the details of mathematical modelling of the PV system and the load forecasting
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are presented. The implementation of this modelling strategy with data from Ghana through
simulations in the MATLAB environment is carried out in section four. The results from the
simulations are also analyzed and discussed in this section. And finally, conclusions and recommenda-
tions are outlined in the fifth section.

2 Materials and Methods

This section discusses the various mathematical methods to estimate the components for calculating
the reliability of the RESS.

One of the effective ways to estimate the reliability of a RESS for a household or community is
to accurately predict the total load demand and the total energy produced by the PV system [12]
which have been discussed in the next section

2.1 Methods for modeling electricity demand for households

Mostly, the real household consumption data is not available for most homes in Ghana and some
parts of the world because of unavailability of electricity usage monitors which measure precisely
the amount of power a gadget consumes [13]. As a result, various authors have proposed different
methods to predict the total household energy consumption [14],[15],[16],[13],[17],[11],[4],[18],[19],[20],
[21],[22],[23],[24],[25],[12],[26],[27],][28],[29],[30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[41],[42].

For instance, in the following studies, [33],[34],[35],[36],[37],[38],[39],[40],[41] the Bottom-up method
was applied to forecast households energy consumption and they concluded that the results obtained
were highly promising. Also, in these studies [26],[27], [28],[29],[30],[31],[32], artificial neural networks
was applied to forecast residential load in short-term. Forecasting approaches like the fuzzy logic
were employed in the following studies [24],[25],[12],[42] to predict the household energy demand.
Other robust methods like optimization and wavelet were also applied to forecast residential loads
in the following studies [18],[19],[20],[21],[22],[23].

Though many approaches have successfully predicted the household load with high speed, in a
situation where more priority is assigned to accuracy, the Bottom-up method dominates over others
[32]. Again, the Bottom-up approach captures the effect of each household gadget in estimating
the total energy demand [35]. Therefore, in this paper, it is used to forecast the household energy
demand

2.1.1 The bottom-up method

The main logic behind the Bottom-up approach is to deduce the overall energy consumption of the
household using the appliance wattage. This approach is very robust as it could capture the effect
of each household gadget in estimating the total energy demand [41]. In [41], the details of this
method are presented. Its mechanism is depicted by Fig. 1.

2.1.2 Factors affecting energy consumption

In this paper, the following simplifying assumptions are made in the generation of the load:
e the effect of external Variable such as Mean temperature is ignored.
e Consumer availability: Weekdays consumption does not differ from Weekends.

Depending on the trend of consumption, an appliance could be on at the time of the day and its
consumption cycle will be factored into the total load curve of the household. The activation of an
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appliance is checked using a probability function called Starting Probability function ( Ps) given as
[41]:

Py(I,t,h) = Pu(I, h)f(I,d)Pstep(t) Psar (1) (2.1)
where I, t, h are the appliance, the time step (mins), and the hour of the day respectively, P (I, h):
hourly probability factor which models the levels of activity of each appliance within a day f(I,d) :
the mean daily starting frequency, which models the average time each appliance is used, Pstep(t):
the step size scaling factor scaling the probabilities based on t, Psq([): a probability indicating the
availability a special class of appliances present in a particular household.

INPUT DATA

'

HOUSEHOLD LOAD DEFIMNE A SET OF APPLIANCES IN
CURWVE GEMERATION THE HOUSEHOLDS
LOOP

v

\J APPLIANCE LOAD CURVE
DATA OUTPUT GENERATION LOOP
A
r

DEFINE HOURLY POWER
OVER THE TOTAL TIME

h

SUM UP THE APPLIANCES LOAD

CURWVES INTO HOUSEHOLD
LOAD CURVE

Fig. 1. Bottom-Up Method for Household Load Generation

The monthly average energy consumption by a household by active and standby consumption
parameters can be generated by the equation [41]:

30 % (3600 * Wstan + f(I7 d) Zg:l Wn (I) * tCyCle)

Ep =
3600000
where N, Wsian, Wi (I) are the total number of appliances, nominal and standby power respectively.

(2.2)

Another factor required for the reliability analysis is the model amount of PV power produced by
the RESS, In this paper, we derive a mathematical model to estimate it in the next section.

2.2 Modeling of the photovoltaic (PV) system

To obtain the total power from the PV, it is desired to formulate a function that converts the energy
from the sun into electricity. Modelling of the PV system helps in assessing the general PV system
performance [10]. Solar energy can be generated by different methods:Solar thermal energy,
Photovoltaic cells, and concentrated solar power systems (uses mirrors or lenses). In
this, we use the solar PV panel to generate the expected power for the household since it is one of
the simplest and inventive approaches of exploiting energy from the sun [43]. The panel is made up
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of many cells of semi-conductors that converts the sun’s radiation to electricity. The sun’s photon
strikes these cells and electrons are then released forming electricity [43]. This phenomenon is
depicted by Fig. 2.
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Fig. 2. PV system

2.2.1 The solar geometry

For any design in the solar system, it is always important to fathom the sun’s movement relative
to the horizontal plane and North-South direction. This is described by the following angles that
are shown in Fig. 3:

where:
0. :Zenith angle
0r :Incidence angle
« :Altitude angle
Ys :Sun’s Azimuth angle
Ypv :Panel’s Azimuth angle
154 :Tilt angle

Other vital angles required to compute the angles between the solar panel and sun rays are the:

Latitude (¢): is the angle (measured as if from the centre of the Earth) between a point and the

equator.

Hour angle (w) : Angle representing the position of the sun w.r.t clock hour and with reference

to the sun’s position at noon.
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Fig. 3. The Geometry of the PV System

Declination Angle, (§): It lies between the plane orthogonal to a line between the earth and the
sun and the axis of the earth and it is estimated by the Equation [44]:

declination angle(d) = 23.45%80 sin |:27T <%)} (2.3)
for N being the day’s number.
Altitude, (o), is estimated by the following equation [45]:
a = sin™ " (cos § cosw cos ¢ + sin § sin @) (2.4)
Hour angle, (w) : This can also be computed by the following equation [45]:
. _1 (sina —sindsin ¢
_ sin ¢ 2.
v s ( cos ¢ cos § ) (2:5)
The Solar Azimuth Angle, (A.):
. _1 [ coscosf, sin ¢ — sin §
A. = sign(w) |cos ( Sincos 0. cos 6 ) ’ (2.6)
The sun’s incidence Angle, (6;), can be estimated by [44]:
cos(fi) = sin¢gsindcos B + cospsind cos A sin 8
+ cosw cos ¢ cos B cos§ — cos d sin ¢ sin B cos As cosw (2.7)

—sin B cosdsinwsin A

From Equation (2.7), if the panel is on the horizontal surface, 8 = 0, and thus Equation (2.7)
becomes:

cos(0i) = cosf, = sin d sin ¢ + cos § cos ¢ cosw (2.8)
When the the tilted panel faces the equator, As = 0 and we have:
cos(#i) = cosw cos (¢ — ) cos d + sin (¢ — ) sind (2.9)
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2.2.2 Estimation of solar irradiance on tilted surfaces

The solar radiation intensity (power) falling on a surface (area) is called Solar irradiance and it is
measured in W/m? or kW/m?. The total amount of solar radiation energy integrated over a period
of time is the solar irradiation and it is measured in (J/m?). Three components of global irradiance:
Beam (direct) irradiance, Diffused irradiance, and the Reflected irradiance The solar
irradiance is always measured on flat surfaces and these measurements are used to estimate the
total irradiance falling on sloped surfaces [44].

The only types of irradiance that are absorbed by the horizontal surface are the beam (Fup) and
diffuse (Fua) so the global irradiance on horizontal surface Eg, can be stated as [45]:

Ec = Eup + Fud (2.10)

However, on the tilted surface, a portion of the reflected irradiance is absorbed and thus the global
irradiance (E7) on a sloped surface can be estimated as [44]:

ET = RbEHb + FdEHd + ngEG (2.11)

Where p is the ground reflectance (albedo) € [0.2,0.7], Fy represents the diffused tilt factor, Rs
represents the tilt factor of the beam radiation, Fj; denotes the ground reflected tilt factor.

NB: These factors are the ratio of measured horizontal irradiance to that of the irradiance on the
tilted surface. Each of these factors is determined in the following sections.

2.2.3 The diffused and reflected components on a tilted panel

The diffused irradiance on the panel can be estimated by the Liu and Jordan PV Isotropic model
[44]. Since the horizontal surface has no reflected irradiance measurements, the amount of irradiance
reflected on the panel is found by the product of Eg and the factor F, [45]. From the Fig. 4, the
tilt reflectance and diffused factors can be obtained by trigonometric ratios as:

Toe = 2/2 Ty cos 0;dfi = 21, (2.12)
0

59 5
I = / Ib,n cos 0;dl; + / Ib,n cos 0;d0;
0 0

=TIy n(cosB+1) (2.13)

Iay  Iyn(cosB+1)  1+cosp
Ry =—1 = =

2.14
Iy 20y, 2 (2.14)

Similarly, we obtain R, as:
1—
Ry = %Sﬁ (2.15)

2.2.4 Calculation of beam component

The direct component is estimated from the beam irradiance on the horizontal surface [44].
In Fig. 5, if I, denotes the rate of horizontal irradiance and I, ; that of a tilted panel, then it can

be deduced that: I J 0 9

b,t b,n COSU; CosU;
=t _ b - 2.1
Ry Iy Iyncosf, cosf, (2.16)

where cos 0. and cos@; are defined by Equations (2.8) and (2.9).
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Therefore from Equations (2.14), (2.15) and (2.16), Equation (2.11) becomes:

Fr— cosb; B + cosfB+1 By
cos B, 2

+ <#> peEuc  (2.17)

The power produced by the PV panel at time ¢ is given by [45]:
Epo(t) = (po Kpv) Er(t) (2.18)

where 7,, and Kp, are the PV modules efficiency and nominal capacity respectively.

Thus, in this paper, Equation 2.18 is used to estimate the total energy from the PV system.

e
B i e i
e S

Fig. 4. Diffused Irradiance

V22
ZZ 7

Fig. 5. Beam Component On Surfaces

2.3 Estimation of reliability of the PV system

The PV system reliability is the probability that the system is able to supply sufficient power to
match the energy demand at all times. In this paper, it is estimated using the Loss of load probability
(LLP). The LLP measures the average percentage loss of load demand in a power system [9]. It
is indeed the total probability that the PV system would experience blackout and it is one of the
main constraints that any power system must satisfy [8]. For each period during one year, the LLP
is stated as:

LLP = Z; {W x 100 (2.19)

Where E,,(t) and F,,(t) are the hourly total load demand and PV power respectively.
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2.4 Case study

To test the design methodology, a 5kW RESS established for a household of five (5) rooms flat in
KNUST, Ghana was considered. The main data used were the hourly load profiles estimated by
the Bottom-up method and the measured hourly irradiance for each month within the year. The
load demand data is shown in Fig. 6 below. The sample of parameters on households appliances
can be found in Table 1.

Table 1. Households Appliance Data

Gadget Psat Wn Wstan f tcycle
(I (W) mins

Microwave 0.93 1500 0 7.5 5
Fridge 1 1.0 110 8.10 40.5 12
Fridge 2 0.31 110 8.10 40.5 12
Coffee Maker 0.37 1000 0 1.12 6
Clothes washer 1.0 1200 0 0.75 54
TV 1 1.0 105 4 1.95 90
TV2 0.21 83 4 0.28 60
Air conditioner 0.93 1300 0 2.36 120
Lighting 1.0 120 0 18 30

The Fig. 6 is the average Households energy consumption data for all the months within the year.
It is observed that between 5:00 AM and 8:00 AM, there is a little pressure on the power which
describes the morning activities and between 3:30 PM to 8:00 PM, there is massive pressure on the
power which depicts the numerous household activities that go on after days work.

80 A

=
=]
5
2
5
i
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FEB
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@
[=]
1

APR
WA
JUM
JUL

ALMG

Household Loads (kW)
B

SEP
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20 4

o 5 10 15 20 25
Time(hours)

Fig. 6. Average Household Load Profiles

Another input data used to test the proposed methodology is one-year hourly solar irradiance. This
data is estimated from measured solar irradiance on the horizontal surface obtained from KNUST.
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The solar irradiance data has only the diffused and beam measurements so the reflected irradiance
is estimated by multiplying the albedo 0.2 by the global irradiance on the horizontal surface. The
estimation of the irradiance on the panel was done using the PV power function given by Equation
(2.18) and the following parameters in the Table 2. The hourly time step is used because it is
assumed that within a period of one hour, the effect of the variations in the RES is insignificant

Table 2. Parameters of the PV panel

Location KNUST
Project lifetime (yrs) 25
Efficiency () 15%
Longitude 1.5654° W
Latitude (¢) 6.6732° N
Reflectance (p) 0.2
Tilt angle (3) 30°
Azimuth angle () 0°

The estimated solar power for the household is illustrated in Fig. 7.
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Fig. 7. Hourly Estimated PV Power for the Household

To measure the power deficiencies for each of the months within the year, the distributions of the
power produced from the PV against the load demand of the household for all the months in the
year are compared. This analysis and assessment would guide the designer to decide when and
where to establish a RESS within the year and the country since it gives many ideas about blackout
hours. It is observed from Figs. 8-13 that from 6 pm-6 am each day in all the months, the PV
system does not produce significant amount of power and hence the system experiences a high level
of power shortage. However, during the day, especially around 9 am to 4 pm, the average amount
of power produced by the RESS exceeds that the load demand of the household and thus, a higher
level of reliability is obtained.

On monthly basis, the LLP in each month has been provided in Table 3 below. The results indicate

that months such as January, February, November and December have the highest level of reliability
and this could be the fact the sky is mostly clear during these months
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Table 3. Level of

reliability of each Month

Month LLP (%)

January 17.2016
February 17.6704
March 17.9144
April 17.7623
May 18.3697
June 18.6793
July 17.7871
August 18.3931
September 18.1756
October 17.7445

November 17.5598
December 17.2461
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Fig. 8. Comparison of Load D
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Fig. 11. Comparison of Load Demand and PV Power Produced from July-August
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Fig. 12. Comparison of Load Demand and PV Power Produced from July-August
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Fig. 13. Comparison of Load Demand and PV Power Produced from July-August

3 Conclusion

In this paper, a practical methodology has been developed to assess and analyse the level of
reliability of Renewable Energy Supply Systems for Households. The approach involved an Isotropic
PV model for estimating the global solar irradiance on tilted panels, the bottom-up method for
household load forecasting and the Loss of Load Probability function for quantifying the reliability
level. The results indicated that without buck-up systems, the RESS would experience an average
annual power loss of 17.8753% and thus, it is recommended that either solar batteries or the grid
be used as a backup system to achieve a 100% level of reliability.
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